Modeling and control of size distribution for fluidized bed silane decomposition

Christy M. White
B. Erik Ydstie

Department of Chemical Engineering
Carnegie Mellon University
Pittsburgh, PA
Photovoltaic Industry

Industry Growth
IEA-PVPS, ’03

Solar Cell Production

Metallurgical Grade $3-5 per kg
Electronic Grade $40-60 per kg

Raw Material
SiHCl₃ (TCS) Distillation
Decomposition
Crystallization
Wafers
IC’s

Missing Link
Insufficient

Solar Grade Aim: $20 per kg
Remelt/Cryst
Wafers
PV Cells
Silicon Production

Siemens Reactor
Batch Process
1100°C

Fluid Bed Reactor
Continuous Process
650°C
Large surface area

Dense Phase
SiH₄ Decomposition
Particle Growth
Size Distribution

SiHCl₃ or SiH₄

SiH₄ Decomposition
Modeling Particulate Processes

Crystallization
Aerosol Formation
Cell Growth
Fluidization

Population Balance

$$V \left(\frac{\partial n}{\partial t} + \nabla \cdot \mathbf{v}_i n + D - B \right) + n \frac{dV}{dt} = - \sum_k Q_k n_k$$

- Density distribution
- Internal flux
- Death and birth terms

Continuous phase
Distributed phase
External coordinates
Space, time
Internal coordinates
Size, age, composition
External flow terms
Overall Reaction and Gas Phase

Thermal Decomposition of Silane: $\text{SiH}_4(g) \rightarrow \text{Si}(s) + 2\text{H}_2(g)$

Ideal operation: dense zone is a CSTR

Gas phase balance equations (SiH_4, H_2)

$$\frac{d(V_g \cdot C_{so})}{dt} = F_{in} \cdot C_{si} - F_{out} \cdot C_{so} - (R + \text{loss}_{\text{hom}}) \cdot V_g$$

$$\frac{d(V_g \cdot C_{ho})}{dt} = -F_{out} \cdot C_{ho} + 2 \cdot (R + \text{loss}_{\text{hom}}) \cdot V_g$$

Reaction rate defined by Lai et al. (1986)

$$R_{\text{het}} = 2.79 \times 10^8 \exp(-19530/T)C_s$$

$$R_{\text{hom}} = 2 \times 10^{13} \exp(-26000/T)C_s$$

Accounting for loss through entrainment \rightarrow Total reaction:

$$R = R_{\text{het}} + (1 - \eta)R_{\text{hom}}$$

η is fraction of product (powder) lost

Behavior along external coordinate axes: position and time
Solid Phase

Size interval mass balance

\[\frac{dM_i}{dt} = f_{i-1} + rxn_i - f_i + f_{a_i^{IN}} - f_{a_i^{OUT}} + \sum_i q_i \]

Assume

\[rxn_i = R \cdot \frac{A_i}{\sum_i A_i} \]

\[f_{a_{i,j}} = k_{i,j} C_i C_j \Rightarrow \]

\[f_{a_i^{OUT}} = \sum_j \left(f_{a_{i,j}} \cdot \frac{m_i}{m_i + m_j} \right) \]

\[f_{a_i^{IN}} = \sum_j \sum_k f_{a_{j,k}}, \text{ for} \]

\[m_i^{LB} \leq (m_j + m_k) < m_{i+1}^{LB} \]

Derive \(f_i \)

assuming continuous number:

\[N_i = \frac{M_i}{m_i} \Rightarrow \frac{dN_i}{dt} = \frac{1}{m_i} \cdot \frac{dM_i}{dt} \]

can obtain:

\[f_i = (rxn_i + a\text{term}_i) \cdot \frac{m_i+1}{m_{i+1} - m_i} \]

\[a\text{term}_i = f_{a_i^{IN}} - m_i N_i \]

Behavior along internal coordinate axis: size
Solution Strategy for Discrete Model

Ordinary differential equations for mass in gas and solid phases + Algebraic constitutive equations

DAE system solved by MATLAB’s ode15s

<table>
<thead>
<tr>
<th>Adjustable Parameters</th>
<th>Example Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>η</td>
<td>Fraction of powder lost</td>
</tr>
<tr>
<td>$k_{i,j}$</td>
<td>Aggregation proportionality constant</td>
</tr>
</tbody>
</table>
Experimental Data for Validation

Operation of pilot scale reactor

- Load known initial distribution
 - sieves used to measure distribution

- Continuous feed to fluidized bed

- Withdraw samples regularly
 - ~8-12 samples per run
Particle Size Distribution
Controlling Continuous Operation

Objective
control: mass of silicon
manipulate: external flow rates

\[\sum_i M_i - \sum_i q_i \]

- **Si powder**
- **H\(_2\)**
- **Si seed**
- **Si product**
- **SiH\(_4\)**
- **H\(_2\)**
- **feed**

System
Controller
Inventory Control of Population Balance

\[
\frac{dM_i}{dt} = f_{i-1} + rxn_i - f_i + f_{a_i}^{IN} - f_{a_i}^{OUT} + \sum_i q_i
\]

\[
g_i
\]

Apply inventory control to system:

\[
\sum_i \frac{dM_i}{dt} = \sum_i g_i + \sum_i q_i = -K \left(\sum_i M_i - M^* \right)
\]

\[
\Rightarrow \sum_i q_i = -\sum_i g_i - K \left(\sum_i M_i - M^* \right)
\]

Constant mass in reactor: \(product = -\sum_{i=1}^{N} g_i - K \left(\sum_{i=1}^{N} M_i - M^* \right)\)

Constant seed mass: \(seed = -\sum_{i=1}^{I_s} g_i - K \left(\sum_{i=1}^{I_s} M_i - M_s^* \right)\)
Response to Set Point Changes

- Total Mass in Reactor
- Product Flow
- Seed Mass in Reactor
- Seed Flow
System Dynamics

Graph 1:
- **Y-axis:** Product Flow
- **X-axis:** Time (hr)
- **Legend:** Product Flow

Graph 2:
- **Y-axis:** Product Average Size (mm)
- **X-axis:** Time (hr)
- **Legend:** Product Average Size

Graph 3:
- **Y-axis:** Product Average Size (mm)
- **X-axis:** Seed Mass/Total Mass
- **Legend:** Product Average Size
Silicon Size Distribution

![Graphs showing silicon size distribution](image)
Summary

• Size interval mass balance predictions of particle distribution compare well with data

• Simulations of continuous operation and inventory control indicate that size is controllable

• Further investigate measurability and stability

• Application to other particulate processes or multiscale modeling is significant
Acknowledgements

- NSF Graduate Research Fellowship Program
- Solar Grade Silicon LLC
- Reactech Process Development Inc.
- Ydstie Research Group

Any opinions, findings, conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.